

AdK Gromacs Tutorial

[image: Adenylate Kinase (AdK)]

	Gromacs

	aiming for 2018 (maybe will work for 5.x, 2016)

	Tutorial

	2.0.2

	Date

	Jul 03, 2018

Warning

This tutorial was originally based on an older tutorial for
Gromacs 4.x [https://becksteinlab.physics.asu.edu/learning/33/tutorial-simulating-adk-with-gromacs]
and has not been completely transitioned to modern Gromacs
versions. It will not work seamlessly and a number of MDP options
are outdated and need to be updated. Please raise any problems in
the issue tracker [https://github.com/Becksteinlab/AdKGromacsTutorial/issues].

See also

Justin Lemkul’s excellent GROMACS Tutorials [http://www.mdtutorials.com/gmx/index.html], which have recently
been updated for Gromacs 2018.

Objective

Perform an all-atom molecular dynamics (MD) simulation—using the Gromacs [http://www.gromacs.org]
MD package—of the apo enzyme adenylate kinase (AdK) in its open conformation in
a physiologically realistic environment, and carry out a basic analysis of its
structural properties in equilibrium.

Tutorial files

All of the necessary tutorial files can be found on GitHub in the
Becksteinlab/AdKGromacsTutorial/tutorial [https://github.com/Becksteinlab/AdKGromacsTutorial/tree/master/tutorial]
directory, which can be easily obtained by git-cloning the repository:

git clone https://github.com/Becksteinlab/AdKGromacsTutorial.git

Workflow overview

For this tutorial we’ll use Gromacs [http://www.gromacs.org] (versions 5, 2016, 2018 should
work) to set up the system, run the simulation, and perform
analysis. An initial structure is provided, which can be found in the
tutorial/templates directory, as well as the MDP files that
are necessary for input to Gromacs. The overall workflow consists of
the following steps:

	1. Directory organization

	2. Generate a solvated protein system

	3. Energy minimization

	4. Position-restrained equilibration

	5. Equilibrium molecular dynamics

	6. Trajectory visualization

	7. Analysis

	8. References

1. Directory organization

The workflow for setting up, running, and analysing a simulation
consists of multiple and rather different steps. It is useful to
perform these different steps in separate directories in order to
avoid overwriting files or using wrong files.

1.1. Create working directories

It is recommended that the following directory structure be used, as the
tutorial steps through them sequentially:

coord/
top/
solvation/
emin/
posres/
MD/
analysis/

Create these directories using:

mkdir top solvation emin posres MD analysis

Description of directories

	coord

	original PDB (structural) files

	top

	generating topology files (.top, .itp)

	solvation

	adding solvent and ions to the system

	emin

	performing energy minimization

	posres

	short MD simulation with position restraints on the heavy protein
atoms, to allow the solvent to equilibrate around the protein
without disturbing the protein structure

	MD

	MD simulation (typically, you will transfer the md.tpr file to a
supercomputer, run the simulation there, then copy the the output
back to this trajctory)

	analysis

	post-processing a production trajectory to facilitate easy visualization
(i.e., using VMD); analysis of the simulations can be placed in
(sub)directories under analysis, e.g.

analysis/RMSD
analysis/RMSF
...

The subdirectories depend on the specific analysis tasks that you
want to carry out. The above directory layout is only a suggestion,
but, in practice, some sort of ordered directory hierarchy will facilitate
reproducibility, improve efficiency, and maintain your sanity.

Important

The command snippets in this tutorial assume the directory layout given
above as the workflow depends on each step’s being carried out
inside the appropriate directory. In particular, relative paths are used
to access files from previous steps. It should be clear from context
in which directory the commands are to be executed. If you get a
File input/output error from grompp (or any of the
other commands), first check that you are able to see the file by just
doing a ls ../path/to/file from where you are in the file system.
If you can’t see the file then check (1) that you are in the correct
directory, (2) that you have created the file in a previous step.

1.2. Obtain starting structure

Note

The starting structure coord/4ake_a.pdb has been
provided as part of the tutorial package, so the instructions that
follow are optional for this tutorial. However, these steps provide an
idea of what may be required in obtaining a suitable starting
structure for MD simulation.

	Download 4AKE [http://www.rcsb.org/pdb/explore.do?structureId=4ake] the Protein Data Bank (PDB) through the web interface

	Create a new PDB file with just chain A

Modify the downloaded PDB file. For a relatively simple
protein like AdK, one can just open the PDB file in a text editor and remove
all the lines that are not needed.(For more complex situations, molecular
modeling software can be used.)

	Remove all comment lines (but keep TITLE, HEADER)

	Remove all crystal waters (HOH) 1

	Remove all chain B ATOM records.

	Save as coord/4ake_a.pdb.

Footnotes

	1

	Often you would actually want to retain
crystallographic water molecules as they might have biological
relevance. In our example this is likely not the case and by
removing all of them we simplify the preparation step somewhat. If
you keep them, gmx pdb2gmx in the next step will
actually create entries in the topology for them.

2. Generate a solvated protein system

2.1. Generate a topology

Using the modified PDB file (chain A of 4AKE with crystal waters removed),
generate a topology file for the CHARMM27 force field together with the
TIP3P water model using the gmx pdb2gmx [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-pdb2gmx.html#gmx-pdb2gmx] tool:

cd top
gmx pdb2gmx -f ../coord/4ake_a.pdb -o protein.pdb -p 4ake.top -i protein_posre.itp -water tip3p -ff charmm27

Note

Total charge -4.000e (in the next step we will add ions to
neutralize the system; we need a net-neutral system to properly
handle electrostatics)

2.2. Solvate the protein

2.2.1. Adding water

Create a simulation box with gmx editconf [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-editconf.html#gmx-editconf] and add solvent with
gmx solvate [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-solvate.html#gmx-solvate]:

cd ../solvation
gmx editconf -f ../top/protein.pdb -o boxed.pdb -c -d 0.5 -bt dodecahedron
gmx solvate -cp boxed.pdb -cs spc216 -p ../top/4ake.top -o solvated.pdb

Attention

In order to reduce the system size and make the simulations run
faster we are choosing a very tight box (minimum protein-edge
distance 0.5 nm, -d 0.5); for simulations you want to publish
this number should be 1.2…1.5 nm so that the electrostatic
interactions between copies of the protein across periodic
boundaries are sufficiently screened.

gmx solvate updates the number of solvent molecules (“SOL”) in the
topology file (check the [system] section in
top/system.top) 1.

2.2.2. Adding ions

Ions can be added with the gmx genion [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-genion.html#gmx-genion] program in Gromacs.

First, we need a basic TPR file (an empty file is sufficient, just
ignore the warnings that gmx grompp [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-grompp.html#gmx-grompp] spits out by setting
-maxwarn 10), then run gmx genion [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-genion.html#gmx-genion] (which has convenient
options to neutralize the system and set the concentration (check
the help!); gmx genion [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-genion.html#gmx-genion] also updates the topology’s [system
] section if the top file is provided 1; it reduces the
“SOL” molecules by the number of removed molecules and adds the
ions, e.g. “NA” and “CL”).

touch ions.mdp
gmx grompp -f ions.mdp -p ../top/4ake.top -c solvated.pdb -o ions.tpr
printf "SOL" | gmx genion -s ions.tpr -p ../top/4ake.top -pname NA -nname CL -neutral -conc 0.15 -o ionized.pdb

The final output is solvation/ionized.pdb. Check visually in
VMD [http://www.ks.uiuc.edu/Research/vmd/] (but note that the dodecahedral box is not represented
properly). 2.

Footnotes

	1(1,2)

	The automatic modification of the top file by
gmx solvate [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-solvate.html#gmx-solvate] and gmx genion [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-genion.html#gmx-genion] can become a
problem if you try to run these commands multiple times and you get
error messages later (typically from gmx grompp [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-grompp.html#gmx-grompp]) that
the number of molecules in structure file and the topology file do
not agree. In this case you might have to manually delete or adjust
the corresponding lines in system.top file.

	2

	For notes on how to visualize MD systems with VMD [http://www.ks.uiuc.edu/Research/vmd/]
see the notes on Trajectory visualization.

3. Energy minimization

In order to remove “clashes” (i.e. close overlaps of the LJ cores) we
perform an energy minimization: Instead of a MD simulation we use an
algorithm to change the coordinates in such a way as to reduce the
total potential energy.

3.1. Set up and generate the run file

First, we will copy a file from the templates folder (provided in this
tutorial) that tells Gromacs MD program how to do energy minimization:

cp ../templates/em.mdp .

Tip

Have a look at the MDP file to get a feel for what kinds of settings
can be adjusted to suit one’s needs. Individual parameters are
explained in more detail in mdp options [http://manual.gromacs.org/documentation/current/user-guide/mdp-options.html].

The *.mdp file contains the settings that dictate the nature of the
simulation. For energy minimization, we will use the simple steepest
descent minimizer (integrator = steep in em.mdp, which runs in
parallel). Use gmx grompp [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-grompp.html#gmx-grompp] (the GROMacs PreProcessor) to generate the run
input file (TPR) from the run parameter file (MDP), coordinate file
(the solvated system with ions; PDB), and the topology (TOP):

cd ../emin
gmx grompp -f em.mdp -c ../solvation/ionized.pdb -p ../top/4ake.top -o em.tpr

3.2. Perform energy minimization

The energy minimization is performed with gmx mdrun [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-mdrun.html#gmx-mdrun] but by
using the appropriate integrator option in the Run control
options in the MDP file [http://manual.gromacs.org/documentation/current/user-guide/mdp-options.html#run-control] it has been instructed to do a energy
minimization:

gmx mdrun -v -s em.tpr -deffnm em -c em.pdb

Ideally, the maximum force Fmax (gradient of the potential) should
be < 1e+03 kJ mol-1 nm-2 (but typically anything below 1e+05
kJ mol-1 nm-2 works). See the screen output or the em.log file for
this information.

Tip

The final frame of minimization (the structure in em.pdb) can
be used as the input structure for further minimization runs. It is
common to do an initial energy minimization using the efficient
steepest descent method and further minimization with a more
sophisticated method such as the conjugate gradient algorithm
(integrator = cg) or the Newton-like
Broyden-Fletcher-Goldfarb-Shanno (integrator = l-bfgs) minimizer.
For details, see Run control options in the MDP file [http://manual.gromacs.org/documentation/current/user-guide/mdp-options.html#run-control].

4. Position-restrained equilibration

We first perform a short MD simulation with harmonic position
restraints on the heavy protein atoms. This allows the solvent to
equilibrate around the protein without disturbing the protein
structure. In addition, we use “weak coupling” temperature and
pressure coupling algorithms to obtain the desired temperatue,
\(T = 300\) K, and pressure, \(P = 1\) bar.

4.1. Set up and generate the run file

We must first tell Gromacs how to perform our equilibration run
in the same way that we did for the energy minimization step.
This step requires the top/protein_posres.itp file with the
default value for the harmonic force constants of 1000
kJ mol-1 nm-2. The position restraints are switched on by setting the
-DPOSRES flag in the posres.mdp file (see mdp options [http://manual.gromacs.org/documentation/current/user-guide/mdp-options.html]).

Create the run input (TPR) file, using the energy minimized
system as the starting structure:

cd ../posres
cp ../templates/posres.mdp .
gmx grompp -f posres.mdp -o posres.tpr -p ../top/4ake.top -c ../emin/em.pdb -maxwarn 2

The mdp file contains cut-off settings that approximate the native
CHARMM values (in the CHARMM program).

Weak (Berendsen) coupling is used for both temperature and pressure to
quickly equilibrate. The protein and the solvent (water and ions) are
coupled as separate groups. Gromacs provides a range of groups
automatically (run gmx make_ndx -f TPR to see them) and we use
the groups Protein and non-Protein (these particularly groups
work since roughly Gromacs 4.5.3). If the standard groups do not work
then you will have to create the groups yourself using gmx make_ndx
-f TPR -o md.ndx (which would save them in a file md.ndx) and
supply it to gmx grompp -n md.ndx.

4.2. Perform equilibration

Run the position restraints equilibration simulation with gmx
mdrun [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-mdrun.html#gmx-mdrun]:

gmx mdrun -v -stepout 10 -s posres.tpr -deffnm posres -c posres.pdb

Attention

Here the runtime of 10 ps is too short for real production
use; typically 1 to 5 ns are used.

Generate a centered trajectory in the primary unitcell

In order to visually check your system, first create trajectory with all
molecules in the primary unitcell (-ur compact; see also below the
more extensive notes on Trajectory visualization):

echo "System" | gmx trjconv -ur compact -s posres.tpr -f posres.xtc -pbc mol -o posres_ur.xtc

Visually check centered trajectory in VMD

If you have VMD [http://www.ks.uiuc.edu/Research/vmd/] installed then you can quickly visualize the system
with the command

vmd ../emin/em.pdb posres_ur.xtc

If you don’t have a vmd command available on the command
line then launch VMD [http://www.ks.uiuc.edu/Research/vmd/], load the emin/em.pdb file
(File ‣ New Molecule…), highlight your molecule 1
(“em.pdb”) and load the posres/posres_ur.xtc trajectory into your
molecule 1, File ‣ Load Data Into Molecule. You
should see that the first frame (from the energy minimization) looks
as if the water is in a distorted box shape whereas all further frames
show a roughly spherical unit cell (the rhombic dodecahedron [http://mathworld.wolfram.com/RhombicDodecahedron.html]).

5. Equilibrium molecular dynamics

5.1. Set up the production run

As usual, we must tell Gromacs what it will be doing using gmx grompp [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-grompp.html#gmx-grompp]
before we can perform our production simulation. Since we want to
start our run where we left off (after doing equilibration), we
prepare the TPR input file based on the last frame of the
Position-restrained equilibration with gmx grompp:

cd ../MD
cp ../templates/md.mdp .
gmx grompp -f md.mdp -p ../top/4ake.top -c ../posres/posres.pdb -o md.tpr -maxwarn 3

The md.mdp file uses different algorithms from the
Position-restrained equilibration for the temperature and pressure coupling,
which are known to reproduce the exact NPT ensemble distribution.

5.2. Run the simulation

Run the simulation as usual with gmx mdrun [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-mdrun.html#gmx-mdrun]:

gmx mdrun -v -stepout 10 -s md.tpr -deffnm md -cpi

This will automatically utilize all available cores and GPUs if
available. The -cpi flag indicates that you want Gromacs to
continue from a previous run. You can kill the job with
CONTROL-C, look at the output, then continue with exactly the
same command line

gmx mdrun -v -stepout 10 -s md.tpr -deffnm md -cpi

(Try it out!). The -cpi flag can be used on the first run
without harm. For a continuation to occur, Gromacs needs to find the
checkpoint file md.cpt and all output files (md.xtc,
md.edr, md.log) in the current directory.

6. Trajectory visualization

Analysis are normally performed locally on a workstation,
i.e. copy back all the files from the supercomputer to your local
directory.

A typical analysis tasks reads the trajectory (XTC) or energy (EDR)
file, computes quantities, and produces data files that can be plotted
or processed further, e.g. using Python scripts. A strength of
Gromacs [http://www.gromacs.org] is that it comes with a wide range of tools that each do one
particular analysis task well (see the Gromacs manual [http://manual.gromacs.org/documentation/current/index.html] and the
Gromacs documentation [http://manual.gromacs.org/documentation/]).

6.1. Keeping the protein in one piece

If you just look at the output trajectory md.xtc in VMD [http://www.ks.uiuc.edu/Research/vmd/] then
you will see that the protein can be split across the periodic
boundaries and that the simulation cell just looks like a distorted
prism. You should recenter the trajectory so that the protein is at
the center, remap the water molecules (and ions) to be located in a
more convenient unitcell representation.

We will use the gmx trjconv [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-trjconv.html#gmx-trjconv] tool in Gromacs to center and remap our system.

Tip

gmx trjconv prompts the user with a number of questions that
depend on the selected options. In the command line snippets below, the
user input is directly fed to the standard input of trjconv
with the printf TEXT | gmx trjconv “pipe” construct. In order to
better understand the command, run it interactively without the pipe
construct and manually provide the required information.

Center (-center) on the Protein and remap all the molecules
(-pbc mol) of the whole System:

printf "Protein\nSystem\n" | gmx trjconv -s md.tpr -f md.xtc -center -ur compact -pbc mol -o md_center.xtc

6.2. Pinning down a tumbling protein

It is often desirable to RMS-fit the protein on a reference structure
(such as the first frame in the trajectory) to remove overall translation
and rotation. In Gromacs, the gmx trjconv [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-trjconv.html#gmx-trjconv] tool can also do more “trajectory
conversion tasks”. After (1) centering and remapping the system, we want
to (2) RMS-fit (due to technical limitations in gmx trjconv you
cannot do both at the same time).

RMS-fit (-fit rot+trans) to the protein backbone atoms in
the initial frame (supplied in the TPR file) and write out the
whole System:

printf "Backbone\nSystem\n" | gmx trjconv -s md.tpr -f md_center.xtc -fit rot+trans -o md_fit.xtc

6.3. Check our modified trajectory

Visualize in VMD [http://www.ks.uiuc.edu/Research/vmd/]:

vmd ../posres/posres.pdb md_fit.xtc

Note

If you don’t have a vmd command available on the command
line then launch VMD [http://www.ks.uiuc.edu/Research/vmd/], load the posres/posres.pdb file
(File ‣ New Molecule…), highlight your molecule 1
(“em.pdb”) and load the posres/md_fit.xtc trajectory into your
molecule 1, File ‣ Load Data Into Molecule. You
should see that the first frame (from the energy minimization) looks
as if the water is in a distorted box shape whereas all further frames
show a roughly spherical unit cell (the rhombic dodecahedron [http://mathworld.wolfram.com/RhombicDodecahedron.html]).

7. Analysis

A typical analysis tasks reads the trajectory (XTC) or energy (EDR)
file, computes quantities, and produces datafiles that can be plotted
or processed further, e.g. using Python scripts. A strength of
Gromacs [http://www.gromacs.org] is that it comes with a wide range of tools that each do one
particular analysis task well (see the Gromacs manual [http://manual.gromacs.org/documentation/current/index.html] and the
Gromacs documentation [http://manual.gromacs.org/documentation/]).

7.1. Basic analysis

As examples, we perform a number of common analysis tasks.

	7.1.1. RMSD

	7.1.2. RMSF

	7.1.3. Distances

	7.1.4. Radius of gyration

7.2. More Gromacs tools

A number of interesting quantities and observables 1 can
be calculated with Gromacs tools. A selection is shown below but you
are encouraged to read the Gromacs manual [http://manual.gromacs.org/documentation/current/index.html] and the Gromacs
documentation [http://manual.gromacs.org/documentation/] to find out what else is available.

Selection of Gromacs analysis tools

The full list of Gromacs commands [http://manual.gromacs.org/documentation/current/user-guide/cmdline.html#commands-by-name] contains 98 different tools. A
small selection of commonly used ones are shown here:

	gmx energy [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-energy.html#gmx-energy]

	basic thermodynamic properties of the system

	gmx rms [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-rms.html#gmx-rms]

	calculate the root mean square deviation from a reference structure

	gmx rmsf [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-rmsf.html#gmx-rmsf]

	calculate the per-residue root mean square fluctuations

	gmx gyrate [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-gyrate.html#gmx-gyrate]

	calculate the radius of gyration

	gmx mindist [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-mindist.html#gmx-mindist] and gmx distance [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-distance.html#gmx-distance]

	calculate the distance between atoms or groups of atoms (make a
index file with gmx make_ndx [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-make_ndx.html#gmx-make-ndx] to define the groups of
interest). gmx mindist is especially useful to find water
molecules close to a region of interest.

	gmx do_dssp [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-do_dssp.html#gmx-do-dssp]

	Use the DSSP [http://swift.cmbi.ru.nl/gv/dssp/] algorithm [Kabsch1983] to analyze the secondary structure
(helices, sheets, …).

See also

	For analysis coupled with visualization look at VMD [http://www.ks.uiuc.edu/Research/vmd/].

	For analyzing MD trajectories in many common formats (including
the XTC, TRR, etc. used by Gromacs) using Python [https://www.python.org], have a look at
the MDAnalysis [http://www.mdanalysis.org/] Python library (the MDAnalysis Tutorial [http://www.mdanalysis.org/MDAnalysisTutorial/] is a
good place to start… and it also uses AdK as an example).

Footnotes

	1

	“Observable” is used in the widest sense in that we
know an estimator function of all or a subset of the system’s phase
space coordinates that is averaged to provide a quantity of
interest. In many cases it requires considerable more work to
connect such an “observable” to a true experimental observable that
is measured in an experiment.

7.1.1. RMSD

The RMSD is the root mean squared Euclidean distance in 3N
configuration space as function of the time step,

\[\rho^{\mathrm{RMSD}}(t) = \sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{r}_{i}(t) - \mathbf{r}_{i}^{\mathrm{ref}}\right)^2}\]

between the current coordinates \(\mathbf{r}_{i}(t)\) at time t
and the reference coordinates \(\mathbf{r}_{i}^{\mathrm{ref}}\).

We compute the Cα RMSD with gmx rms [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-rms.html#gmx-rms] with respect to the
reference starting structure (the one used for creating the md.tpr
file). Work in a separate analysis directory:

mkdir analysis/RMSD && cd analysis/RMSD

First we create an index file for the Cα atoms
1. Use gmx make_ndx [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-make_ndx.html#gmx-make-ndx] to create a file
ca.ndx that contains the Cα atoms as an index
group. Start make_ndx and use md.tpr as input; the
output index file will be ca.ndx:

gmx make_ndx -f ../../MD/md.tpr -o CA.ndx

Use gmx make_ndx [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-make_ndx.html#gmx-make-ndx] interactively by typing the following commands
2:

keep 1
a CA
name 1 Calpha
q

(This sequence of commands only retains the “Protein” default
selection, then selects all atoms named “CA”, renames the newly
created group to “Calpha”, and saves and exits.)

You can look at CA.ndx and see all the index numbers listed
under the heading [Calpha].

Run gmx rms, using our newly defined group as the selection
to fit and to compute the RMSD:

printf "Calpha\nCalpha\n" | gmx rms -s ../../MD/md.tpr -f ../../MD/md.xtc -n CA.ndx -o rmsd.xvg -fit rot+trans

Note that the units are nm.

Plot the timeseries data in the rmsd.xvg 3.

[image: RMSD timeseries]Root mean square distance (RMSD) of the Cα atoms of AdK from
the initial simulation frame.

Footnotes

	1

	Actually, we don’t need to create the index
group for the Cα atoms ourselves because Gromacs
automatically creates the group “C-alpha” as one of many default
groups (other are “Protein”, “Protein-H” (only protein heavy
atoms), “Backbone” (N CA C), “Water”, “non-Protein” (i.e. water and
ions in our case but could also contain other groups such as drug
molecule or a lipid membrane in more complicated simulations),
“Water_and_ions”. You can see these index groups if you just run
gmx make_ndx [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-make_ndx.html#gmx-make-ndx] on an input structure or if you interactively
select groups in gmx trjconv [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-trjconv.html#gmx-trjconv], gmx rms [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-rms.html#gmx-rms], …

However, making the “Calpha” group yourself is a good exercise
because in many cases there are no default index groups for the
analysis you might want to do.

	2

	In scripts you can pipe all the interactive
commands to gmx make_ndx [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-make_ndx.html#gmx-make-ndx] by using the printf ... | gmx
make_ndx trick:

printf "keep 0\ndel 0\na CA\nname 0 Calpha\nq\n" | \
 gmx make_ndx -f ../../MD/md.tpr -o CA.ndx

This will accomplish the same thing as the interactive use
described above.

	3

	If you use Python (namely NumPy [https://www.numpy.org/] and matplotlib [https://matplotlib.org]) then you might
want to use gmx rms -xvg none so that no XVG legend
information is written to the output file

printf "Calpha\nCalpha\n" | \
 gmx rms -s ../../MD/md.tpr -f ../../MD/md.xtc -n CA.ndx \
 -o rmsd.xvg -fit rot+trans -xvg none

and you can easily read the data with numpy.loadtxt() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html#numpy.loadtxt]:

import matplotlib.pyplot as plt
import numpy

t,rmsd = numpy.loadtxt("rmsd.xvg", unpack=True)

fig = plt.figure(figsize=(5,2.5))
ax = fig.add_subplot(111)
fig.subplots_adjust(bottom=0.2)

ax.fill_between(t,rmsd, color="blue", linestyle="-", alpha=0.1)
ax.plot(t,rmsd, color="blue", linestyle="-")

ax.set_xlabel("time t (ps)")
ax.set_ylabel(r"C$_\alpha$ RMSD (nm)")

fig.savefig("rmsd_ca.png", dpi=300)
fig.savefig("rmsd_ca.svg")
fig.savefig("rmsd_ca.pdf")

7.1.2. RMSF

The residue root mean square fluctuation RMSF is a measure of the
flexibility of a residue. It is typically calculated for the Cα
atom of each residue and is then simply the square root of the
variance of the fluctuation around the average position:

\[\rho^{\mathrm{RMSF}}_i = \sqrt{\left\langle
 \left(\mathbf{r}_i - \langle \mathbf{r}_i \rangle \right)^2
 \right\rangle}\]

Use the CA.ndx file from the RMSD calculation with
gmx rmsf [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-rmsf.html#gmx-rmsf]

mkdir analysis/RMSF && cd analysis/RMSF
printf "Calpha\n" | gmx rmsf -s ../../MD/md.tpr -f ../../MD/md.xtc -n ../RMSD/CA.ndx -o rmsf.xvg -fit

A plot 1 of \(\rho^{\mathrm{RMSF}}_{i}\) versus residue number i
shows the regions of high flexibility as peaks in the plot. Note that
a 100-ps simulation might be too short to obtain a meaningful RMSF
profile.

[image: Per-residue RMSF]Root mean square fluctuation (RMSF) of the Cα atoms of AdK.

Comparison with crystallographic B-factors

You can compare the RMSF to the isotropic atomic crystallographic
B-factors, which are related by [Willis1975]

\[B_{i} = \frac{8\pi^2}{3} (\rho^{\mathrm{RMSF}}_{i})^2\]

(In this case you would want to calculate the RMSF for all heavy
(i.e. non-hydrogen) atoms. You don’t need to build and use a separate
index file file: simply choose the default group “Protein-H” (“protein
without hydrogens”)).

Note

Gromacs RMSF are in units of nm and B-factors are
typically measured in Å2.

It is straightforward to write Python code that calculates the
B-factor from the RMSF in rmsf.xvg and it is also easy to
extract the B-factor (“temperatureFactor”) from columns 61-66 in the
ATOM record of a PDB file [https://www.wwpdb.org/documentation/file-format-content/format33/sect9.html#ATOM]. (Left as an exercise…)

Footnotes

	1

	To plot in Python, make sure to not write xvg legend information
to the output file (using the -xvg none flag)

printf "Calpha\n" | \
 gmx rmsf -s ../../MD/md.tpr -f ../../MD/md.xtc -n ../RMSD/CA.ndx \
 -o rmsf.xvg -fit -xvg none

so that you can easily read the data with numpy.loadtxt() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html#numpy.loadtxt]:

import matplotlib.pyplot as plt
import numpy

resid, rmsf = numpy.loadtxt("rmsf.xvg", unpack=True)

fig = plt.figure(figsize=(5,2.5))
ax = fig.add_subplot(111)
fig.subplots_adjust(bottom=0.2)

ax.fill_between(resid, rmsf, color="red", linestyle="-", alpha=0.1)
ax.plot(resid, rmsf, color="red", linestyle="-")

ax.set_xlabel("residue number")
ax.set_ylabel(r"C$_\alpha$ RMSF (nm)")
ax.set_xlim(resid.min(), resid.max())

fig.savefig("rmsf_ca.png", dpi=300)
fig.savefig("rmsf_ca.svg")
fig.savefig("rmsf_ca.pdf")

7.1.3. Distances

Distances can be a very useful observable to track conformational
changes. They can often be directly related to real experimental
observables such as NOEs from NMR experiments or distances from
cross-linking or FRET experiments.

Here we calculate a simple distance between two Cα atoms as an
approximation to the distance between two chromophores attached to the
correspoding residues isoleucine 52 (I52) and lysine 145 (K145) used
in a FRET experiment [Henzler-Wildman2007].

First we need to create an index file containing the two groups:

mkdir -p analysis/dist/I52_K145 && cd analysis/dist/I52_K145
gmx make_ndx -f ../../../MD/md.tpr -o I52_K145.ndx

Use interactive commands like the following 1

keep 0
del 0
r 52 & a CA
name 0 I52
r 145 & a CA
name 1 K145
q

to generate the index file I52_K145.ndx.

Then run gmx distance [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-distance.html#gmx-distance] and compute the distance between the two atoms:

printf "I52\nK145\n" | gmx distance -s ../../../MD/md.tpr -f ../../../MD/md.xtc -n I52_K145.ndx -o dist.xvg

The dist.xvg file contains the distance in nm for each time
step in ps, which can be plotted 2.

[image: Timeseries of the distance between |Calpha| atoms of I52 and K145.]Timeseries of the distance between the Cα atoms of I52 (NMP
domain) and K145 (LID domain).

(You can also use the centered and fitted trajectory
md_fit.xtc as an input instead of md.xtc to make sure
that the distance calculation does not contain any jumps due to
periodic boundary effects, or use gmx mindist [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-mindist.html#gmx-mindist].)

See also

[Beckstein2009] for a discussion of FRET distances in AdK.

Footnotes

	1

	Note that one has to be careful when selecting
residue ids in make_ndx. It is often the case that a PDB
file does not contain all residues, e.g. residues 1–8 might be
unresolved in the experiment and thus are missing from the PDB
file. The file then simply starts with residue number 9. Gromacs,
however, typically renumbers residues so that they start at
1. Thus, in this hypothetical case, a residue that might be
referred to in the literature as “residue 100” might actually be
residue 92 in the simulation (\(N^\mathrm{sim}_\mathrm{res} =
N^\mathrm{PDB}_\mathrm{res} - (\mathrm{min}
N^\mathrm{PDB}_\mathrm{res} - 1)\)). Thus, if you wanted to select
the Cα atom of residue 100 you would need to select r
92 & a CA in make_ndx.

	2

	To plot in Python, make sure to not write xvg legend information
to the output file (using the -xvg none flag)

printf "I52\nK145\n" | \
 gmx distance -s ../../../MD/md.tpr -f ../../../MD/md.xtc \
 -n I52_K145.ndx -o dist.xvg -xvg none

so that you can easily read the data with numpy.loadtxt() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html#numpy.loadtxt]:

import matplotlib.pyplot as plt
import numpy

t,d,x,y,z = numpy.loadtxt("dist.xvg", unpack=True)

fig = plt.figure(figsize=(5,2.5))
ax = fig.add_subplot(111)
fig.subplots_adjust(bottom=0.2)

ax.fill_between(t, d, color="orange", linestyle="-", alpha=0.1)
ax.plot(t, d, color="orange", linestyle="-", label="I52-K145")

ax.set_xlabel("time t (ps)")
ax.set_ylabel(r"C$_\alpha$ distance (nm)")
ax.legend(loc="best")

fig.savefig("d_I52_K145_ca.png", dpi=300)
fig.savefig("d_I52_K145_ca.svg")
fig.savefig("d_I52_K145_ca.pdf")

7.1.4. Radius of gyration

The radius of gyration measures the compactness of a protein
structure.

\[R_\mathrm{gyr}^2 = \frac{1}{M}\sum_{i=1}^{N} m_i(\mathbf{r}_i - \mathbf{R})^2\]

where \(M = \sum_{i=1}^{N} m_i\) is the total mass and
\(\mathbf{R} = N^{-1}\sum_{i=1}^{N} \mathbf{r}_i\) is the center of
mass of the protein consisting of \(N\) atoms.

The Gromacs tool gmx gyrate [http://manual.gromacs.org/documentation/current/onlinehelp/gmx-gyrate.html#gmx-gyrate] can be used to compute the radius of
gyration for the whole protein (using the pre-defined “Protein” index
group)

mkdir analysis/rgyr && cd analysis/rgyr
echo Protein | gmx gyrate -s ../../MD/md.tpr -f ../../MD/md.xtc -o gyrate.xvg

and the resulting time series in file gyrate.xvg can be
plotted 1.

[image: Timeseries of the radius of gyration.]Timeseries of the radius of gyration computed for the whole
protein.

(In principle, \(R_\mathrm{gyr}\) can indicate changes in
conformation but the simulation time in our test trajectory is too
short to reveal the large conformational transition that AdK can
undergo [Beckstein2009].)

Footnotes

	1

	To plot in Python, make sure to not write xvg legend information
to the output file (using the -xvg none flag)

echo Protein | \
 gmx gyrate -s ../../MD/md.tpr -f ../../MD/md.xtc -o gyrate.xvg -xvg none

so that you can easily read the data with numpy.loadtxt() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html#numpy.loadtxt]:

import matplotlib.pyplot as plt
import numpy

t,data,x,y,z = numpy.loadtxt("gyrate.xvg", unpack=True)

fig = plt.figure(figsize=(5,2.5))
ax = fig.add_subplot(111)
fig.subplots_adjust(bottom=0.2)

ax.fill_between(t,data, color="magenta", linestyle="-", alpha=0.1)
ax.plot(t,data, color="magenta", linestyle="-")

ax.set_xlabel("time t (ps)")
ax.set_ylabel(r"protein R_gyr (nm)")

fig.savefig("rgyr.png", dpi=300)
fig.savefig("rgyr.svg")
fig.savefig("rgyr.pdf")

8. References

	Kabsch1983

	Kabsch W, Sander C. Dictionary of protein secondary
structure: pattern recognition of hydrogen-bonded and geometrical
features. Biopolymers. 1983 22 2577-2637. doi:
10.1002/bip.360221211 [http://dx.doi.org/10.1002/bip.360221211]

	Willis1975

	Willis & Pryor, Thermal vibrations in crystallography,
Cambridge Univ. Press, 1975

	Henzler-Wildman2007

	K. A. Henzler-Wildman, V. Thai, M. Lei,
M. Ott, M. Wolf-Watz, T. Fenn, E. Pozharski, M. A. Wilson,
G. A. Petsko, M. Karplus, C. G. Hübner, and D. Kern. Intrinsic
motions along an enzymatic reaction trajectory. Nature,
450:838–844, Dec 2007. doi: 10.1038/nature06410 [http://dx.doi.org/10.1038/nature06410]

	Beckstein2009

	O. Beckstein, E. J. Denning, J. R. Perilla, and
T. B. Woolf. Zipping and unzipping of adenylate kinase: Atomistic
insights into the ensemble of open/closed
transitions. J. Mol. Biol., 394(1):160–176, 2009. doi:
10.1016/j.jmb.2009.09.009 [http://dx.doi.org/10.1016/j.jmb.2009.09.009].

Index

 _images/adk_secondary.jpg

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 AdK Gromacs Tutorial

 		
 Directory organization

 		
 Create working directories

 		
 Obtain starting structure

 		
 Generate a solvated protein system

 		
 Generate a topology

 		
 Solvate the protein

 		
 Adding water

 		
 Adding ions

 		
 Energy minimization

 		
 Set up and generate the run file

 		
 Perform energy minimization

 		
 Position-restrained equilibration

 		
 Set up and generate the run file

 		
 Perform equilibration

 		
 Equilibrium molecular dynamics

 		
 Set up the production run

 		
 Run the simulation

 		
 Trajectory visualization

 		
 Keeping the protein in one piece

 		
 Pinning down a tumbling protein

 		
 Check our modified trajectory

 		
 Analysis

 		
 Basic analysis

 		
 RMSD

 		
 RMSF

 		
 Distances

 		
 Radius of gyration

 		
 More Gromacs tools

 		
 References

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

